EVALUATING GRAPH THEORETIC CLUSTERING ALGORITHMS FOR
RELIABLE MULTICASTING

Esther Jennings Lenka Motyckova, David Carr
Jet Propulsion Laboratory Computer Science Department,
4800 Oak Grove Drive, Lulea University of Technology,
Pasadena, California, 91109, USA. Luled, SWEDEN.

Abstract—In reliable multicast protocols, each data packet be- graph into disjoint clusters. This is very similar to the cluster-
ing sent must be acknowledged. Collecting the acknowledgmentsing technique being used in distributed computing to achieve
centrally at the sources can cause ACK-implosion and can result concurrency and scalability.

in poor scalability. To overcome this, clustering algorithms which In distributed computing, a clustering algorithm would par-
use virtual structures to gather acknowledgments were proposed. tition the graph into local groups according to theal con-

In this work, we analyze the complexities of three such clustering . . . . .
algorithms: Lorax, k-degree, and Self-adjust. We compare the neCt'V'_ty propertiesof the_ graph. ApF"y'”g this FeChmque
quality of the virtual structures produced by these algorithms, T€cursively, we can obtain a hierarchical clustering where a
focusing on the number of clusters, cluster size, cluster radius, higher-level cluster can contain several lower-level clusters.
and the optimal positioning of cluster leaders. Our simulation Using this hierarchy, one can minimize the amount of com-
showed that the virtual structure produced by Self-adjust is bet- munication by performing computations as much as possible
ter in terms of cluster radius and the location of cluster lead- locally and sending only aggregated data globally, where the

ers. However, due to the self-adjusting nature of the algorithm, it aggregated data is a summary representing all the data in a
might take longer time to compute than the other two algorithms.  ¢|yster.

Since reliable multicast services are being used increasingly
to support real-time applications, it becomes necessary to un-
|. INTRODUCTION derstand the strengths and weaknesses of the virtual structures

With the growing size of the Internet, as well as the grc)V,produced by the previously proposed clustering algorithms.

ing interest in multicast applications, we can expect large mdin€ auality of these structures may directly affect the perfor-
ticast groups and groups that span a large geographical afaance of reliable multicast protocols which use these struc-
The routers in the Internet are responsible for routing mulfd"es to gather acknowledgments.
cast packets. Thus, the growth of multicast groups usually in-In recent years, several clustering algorithms have been pro-
creases the load of all the intermediate routers and may capeged [7], [8], [9], [10], [11]. The algorithms proposed in [7],
an overload on routers. To avoid overload, multicast protocd&0], [11] produce a clustering, which reflects the local con-
must be scalable, i.e., the network load must be independenfiettivity properties of the network (or multicast group) topol-
the number of receivers in a multicast group. In reliable gro@gy. The algorithms proposed by [8], [9] produce a cluster-
multicast, each packet being sent must be acknowledgedng which does not necessarily preserve the local connectivity
ensure that the packet has been received by all the multigaisiperties. Thatis, a real cluster (densely connected subgraph)
group members. Collecting the acknowledgments centrallyG&n be cut into several pieces, where each piece ends up in a
the sources can cause ACK-implosion and can result in pabiferent cluster.
scalability. To overcome this, several clustering algorithms In these previous works, performance was evaluated in
were proposed which use virtual structures to gather acknowdrms of network throughput only. The virtual structures were
edgments. These virtual structures might contain intercantegrated into reliable multicast protocols and performance
nected disjoint clusters, or a multi-level hierarchy of overlagvas evaluated by analysis and simulation. In [7], [8], [9],
ping clusters. [10], [11], the throughput was analyzed in terms of the load per
Clustering algorithms have been studied extensively singede, which is bounded by a constant. Thus, the throughput
the 1970’s [1], [2]. With the recent interest in data mininglone does not tell us how the virtual structures produced by
and computational biology, there is a new wave of clusterinie different clustering algorithms compare against each other.
algorithms being proposed [3], [4], [5], [6]. Some of these aWithout looking at the properties of the virtual structures, we
gorithms use graph theoretical techniques to partition an ingéin no insight about how these properties may affect the per-

formance of reliable multicast protocols.

t The research described in this publication was carried out at the JetPropuI—Th. K by simulati th irtual struct
sion Laboratory, California Institute of Technology, under a contract with the | NS WOTK compares, by simulation, the virtual structures

National Aeronautics and Space Administration. produced by three selected clustering algorithrgrax, k-



degreeand Self-adjustclustering. To evaluate the qualitymessages are short because each message contains a constant
of the virtual structures, We focus on the following metricnumber of parameters. The message complexity estimates the
(1) number of clusters: affects the load at the source(s); (Q)ymber of messages exchanged in the algorithms for cluster-
cluster size: affects the load of the cluster leader; (3) clusg. Table | summarizes the complexities of the simulated al-

ter radius: affects the delay within the cluster; and (4) optijorithms, wheren andn are the number of edges and the
mality: accesses the placement of a leader in relation to itgmber of nodes of an input grajghrespectively. Thé in

cluster members with respect to a tree structure. The leatle table denotes the lower bound on time or messages with
position can have an effect on the retransmission delay. réfspect to each algorithm. The analysis of the algorithms are

an acknowledgment-tree (Ack-tree) is used for gathering guresented in Section III.

knowledgments, the Ack-tree achieves best performance if the

cluster leaders are also the ancestors of their respective cluster TABLEI
nodes in the multicast delivery tree. In this measure, we count ALGORITHM COMPLEXITIES
the number of cluster members which are not descendents of
the cluster leader in the multicast tree. Complexity | Lorax | k-degree| Self-adjust|
Time Qogg n) | Qk - Dpaz) | Q(log, n)
II. MULTICAST GROUP MODELING Message Q(m) Q(m) Q(m)

We model the network as a graph containing routers only,
because the receivers are directly connected to the routers as
peripheral trees. We assume the existence of multicast tree(s)
for the routing of multicast data. The cluster structure prtﬁ'
duced by the clustering algorithms are used to collect acknowl-This algorithm [8] first constructs a shared Ack-tree starting
edgments for the multicast packets. from a specific root node. The Ack-tree is constructed using

Given an underlying shared multicast tree, gr&pls de- both root-based and off-tree based schemes. The algorithm
fined as the (connected) subgraph of the network, inducedibyoot-based because the Ack-tree is grown from a specific-
the vertices of the underlying multicast routing tree(s). Notslected root using the expanded ring search (ERS) heuris-
that,G contains all the vertices of the multicast routing tree(sic. The ERS is controlled by a time-to-live (TTL) parameter
plus all other IP-network connections induced by these vethich is a hop-count. That is, the ERS will only reach nodes
tices. within TTL hops. The root-based ERS alone does not guaran-
tee that all the receivers wanting to receive reliable multicast
packets will be reached. This can happen if many nodes be-

We focus on graph theoretic clustering algorithms whidhveen the root and the receivers are uninterested in getting re-
are suited for distributed computation using only local infotiable multicast packets. Therefore, we need the off-tree based
mation. For example, graph theoretic clustering algorithrasheme where a receiver can initiate an ERS to find nodes on
which compute minimum cuts are not suitable for distributetie Ack-tree, and to attach itself to the Ack-tree through one
computing because two edges belonging to the same cut meaghese nodes.
be very far away from each other, and they might not share anyClusters are formed by grouping a node with at mBst
common end-points. Thus, one cannot compute the cuts froits children, whereB is a parameter. A child is any node
local information only. which can be reached within a pre-specified delay. Each node

In RMTP receivers are grouped into local regions. Thereisay have a different parametBr The node and its (at most
a designated receiver (DR) in each region to assist the senBgrchildren form a local group. If a node has more than
to process acknowledgments and to retransmit data. Howewildren, it will abandon the extra children. The process of
we did not simulate the RMTP clustering because we do rieeping the number of children at or beld®vat each node is
know how to implement the selection of DRs in order to makealledfission The abandoned children become orphans. If the
a fair comparison. orphans were to look for new parents using the ERS heuris-

In [7], a greedy algorithm which forms clusters of cliquesics, this may cause an non-scalable amount of work for some
(fully connected graphs) was presented. Packets are routedes. Therefore, the node which abandons children will look
over shortest paths between boundary nodes in cliques. ¥¥aong its remaining children to find the node (sdywhich
did not simulate this algorithm because the Internet tendshas the least number of children. The node willask initiate
be sparse, so the clique size is usually small. Therefore, this adoption request. Hopefully, this node is also close to the
type of clustering does not help in decreasing the load of thephans. The adoption request is sent’olocal group, hop-
routers by much. ing to get responses from the orphans. By this fission process,

Before we present the three selected algorithms, a few tdre clusters formed might not be topology preserving. That
minologies are need. The time complexity is estimated by as; a node might need to pass another cluster to reach other
suming that each message taked) time to transmit; this nodes in the same cluster. This affects the retransmission; if
does not imply that the algorithms are synchronous. Tlige cluster leader is not an ancestor of the node requesting re-

Lorax Algorithm

II1. ANALYSIS OF ALGORITHMS



transmission, the request might be propagated to the rootieds than the maximum distanég,,,..). D... iS @ guess on
the ACK-tree, making retransmissions non-local. the maximum radius of the given tree. A parameféf, ..., is
Time complexity. assume the input graph is a tree where eacised to limit the number of replies (similar 8 in the Lorax
node hasB children within distance one. The virtual strucalgorithm).

ture will then havdogg n layers, thus the time complexity of  If an advertising node receives too many replies (that is, ex-
Qlogg n). ceedingK ... ) from distinct nodes wanting to join its cluster,
Message complexity assume a predefined root starts the alhen it checks whethdp,,.; can behalved If so, the node will
gorithm. The clusters are formed during an ERS to reachject all the nodes wanting to join its cluster, decreagg to
nodes at the next layer. Since we assume each nod® hakalf of the old value, and advertise again. However, when the
children at distance one, a node starting to grow a cluster willmber of replying nodes is acceptable, the new leader starts
finish within constant time. The number of messages senttie second level clusters within the radius where too many
each link to form clusters is bounded by a constant. Thus, thedes first replied.

message complexity 3(m). If D, is one and a node receives more tl&an, . replies,
. then it is assumed that the node is capable of handling all re-
B. k-degree Algorithm plying nodes. So, it accepts all nodes.

The algorithm is given two parametets,andD,,, ..., where If a node has replied to a potential leader and it is waiting
k is a guess of the highest node degree, Bpg,. bounds the forareply, orif it is advertising to be a leader, then it does not
cluster radius. The algorithm detects nodes of degree atdea@rward advertisements from other potential cluster leaders. In
(having at leask: neighbors) and builds a cluster around eadhis way, nodes on the edge of each cluster will block interior
such node. The clusters are built concurrently, so they magdes from becoming leaders.
compete for members. Starting from a node (of degrel), Time complexity. assume all nodes have degigethen the
nodes are added to the cluster layer by layer. Let the numiiere complexity would bé)(log;, n).
of nodes in the current layer Byerc,-rent|. Ifthere arek x  Message complexity since we assume each node has degree
|layer...rent| @vailable nodes in the next layer, and the clustér the algorithm will create clusters successfully by exchang-
radius has not reachdd,,,, yet, then the cluster continuesng a constant number of messages on each edge. Thus, the
its growth by including the available nodes in the next layemessage complexity i8(m).
Otherwise, it stops at the current layer. The algorithm then
decrease& by one, and repeats the cluster building process, IV. SIMULATION
until £ = 3. After this, the remaining nodes not belonging to For our simulation, we generate input graphs that have
any clusters must belong to a chain. Chains are then dividéeernet-like topologies by using Tiers (version 1.2)[12]. The
among their closest clusters. same graphs are used for all three algorithms. We run the sim-
Time complexity: assume all nodes have degkedeach clus- ulation using Java version 1.2 on a Sun Sparc station. Each
ter takes2(D,q,) to create, and the clusters are formed cofiepology is a graphG representing a multicast group. We
currently. The process is repeated for dediee 1), (k —2), could regard as the connected subgraph of a network, in-
-++, 3. This totals td2((k — 3) - Dynq.) time. No synchroniza- duced by the vertices of predefined multicast routing tree(s).
tion is needed between passes because a timeout can be usgHe goal of a good clustering algorithm is to obtain a bal-
to start the next pass. B,,,. islog, n, and all nodes have anced clustering structure (dependent on the topology of the

degreek, then the t_ime comple_xity would Be(log;, n). multicast groups in the network). The structure should enable
Message complexity the algorithm makegk — 3) passes to different clusters to process acknowledgments concurrently,
grow clusters around nodes of degkgék—1), (k—2),---,3. and to localize retransmissions. That is, when a packet is

In each pass, the nodes not belonging to a cluster yet whiglissed at a node, the lost packet will be obtained from another

satisfies the degree requirement will start growing its clust@iode which resides in the same cluster or at a nearby cluster
The nodes already belonging to clusters do not exchange mgienever possible. The simulation assumes: (a) all links have

sages. When forming a cluster, the nodes involved exchangsiual delays, (b) no messages are lost, and (c) all nodes have
constant number of messages on each edge. Thus, the messggel response times.

complexity is€2(mn). We generate topologies containing 5 MANs (60 and 110
If-adi laorith routers), 10 MANSs (115 and 215 routers), 20 MANSs (225 and
C. Self-adjust Algorithm 425 routers), 50 MANs (570 and 1070 routers), 100 MANs

Assume a tree is given; this tree can be a multicast tree(@850 and 3150 routers), 200 MANs (2700 routers). Table Il
the ACK-tree of [8]. Starting from the root, the root becomesummarizes the parameters used to generate the input graphs.
active, and becomes the root of the first cluster. Then the &t-the table,nR is the number of router nodesM AN is
tive nodes advertise within a predefined distad2g,, to ask the number of MANs,nLAN is the number of LANs per
other nodes to join its cluster. If it does not hear any repMAN, wBone is the number of back-bone nodes connecting
from any node wanting to join its cluster, then it will advertisthe MANs to the WAN, andnBone is the number of nodes
again; this timedoublingthe distanceé,.; (as long ad,.; is connecting the LANs to MANs. The redundancy parameterin



the WAN is set to three for all input graphs because we want to?®
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generate graphs that are more connected than trees. All other " orak
redundancy parameters are set to one. 2000 | !
TABLE Il
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TOPOLOGYGENERATION PARAMETERS

Graph| nR | nMAN | nLAN | wBone [ mBone|

1000

Nunber of clusters

G, 60 5 5 10 5

G 110 5 10 10 10

G, 115 10 5 15 5

G4 215 10 10 15 10 D s

G; 225 20 5 25 5 %o 2 s Gaphéme, s 10 12
gi g?g 28 12 ?g 12 Fig. 1. The number of clusters with respect to graghsto G .
Gs 1070 50 10 70 10 .

Gy 1350 100 5 150 7 o
Gio | 3150 100 10 150 20 I

G 2700 200 5 300 7 mr
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When running the simulation, the following parameters ar
used for all the runsD;,;; = 4 (this is the initial value of
Dget)y Dmaz = 10 (a guess of the maximum radius of the: ,|
tree, and by thel-degree algorithm to bound the radius of &
cluster),B,,q. = 6 (the maximum number of children within a
fixed distance, used dyorax), dLim = 6 (used a% in thek- | "
degree algorithm). When simulatihgrax and theSelf-adjust e ‘ ‘ ‘
algorithms, if the graph hasnodes, we make runs. In each 0 2 4 6 8 10 12

. . . G aph Number
run, a different node is used as the root to start the algorithm. Fig. 2. Maximum cluster radius with respect to graphsto G11.

cl us:

V. RESULTS

From the simulation, we observe the following: of MANSs, the graphs with a higher number of LANs per MAN
« cluster number: k-degreeproduced least number of clus-produce clusters of larger size, which is what we expected.
ters; Self-adjusproduced the most number of clusters. Fig. 4 cluster radius: In Fig. 2, we compare the maximum clus-
shows the number of clusters generated by the algorithms. ®nradius produced by the algorithms. On the horizontal axis
the horizontal axis are the input grapfis to G,1, whereG; are the input graph&, to GG11, whereG; has the smallest
has the smallest number of MANs aGd; the largest number number of MANs and7,; the largest number of MANs. The
of MANs. The vertical axis is used for the average numbeertical axis is used to record cluster radius. These are the
of clusters over all simulation runs. In all three algorithmsverage of maximum cluster radii over all runs. Usingr
the number of clusters increases as the number of MANs iax, the cluster radius increases as the number of MANS in-
creases. This is an indication that the virtual structures prreases. Using-degreethe cluster radius fluctuates because
duced by the algorithms cannot be readily used to achiete clusters produced are highly degree-dependent (topology-
scalable reliable multicast protocols. In a scalable protocdependent). For th8elf-adjustalgorithm, the cluster radius
the number of clusters needs to be kept at a small constantreases slightly as the number of MANs increases. When the
This means, we may need to relax the other parameters, engmber of MANs reached a certain number (approximately.
cluster radius, cluster size. 50), the cluster radius becomes constant.
« cluster size since bothLorax andSelf-adjusthave control « optimality : Self-adjusstrives to preserve topology, and un-
over the maximum cluster size, the cluster sizes for these dér the ideal conditions of the simulation, all cluster leaders
gorithms are kept at a constant 7. On the other hand, the clugre ancestors of their respective members. K-degreeal-
ter size produced bi-degreefluctuates between 10 and 20gorithm does not even assume an underlying multicast routing
Looking at the result ok-degree there is no clear trend of tree, so optimality has no meaning here. Eorax, Fig. 3
increased cluster size as the number of MANs increases. $frows that the number of non-optimal nodes increases more
stead, the clusters formed depend highly on the node degifegn linearly as the number of MANs increases. This could
(topology-dependent). For input graphs with the same numladfect the reliable multicast protocol unfavorably in terms of
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From the simulation runs, we observed a clear trade-off bjet] SI\O/I%tyékové, L., D. Carr, and E. Jenning€luster-Ring Topology for Re-
tween the number of clusters and cluster size, as we expected[iable Mul_ticasting In Proce_edings of I_nternational Co_nfe_rence on Paral-
To achieve optimality, we motivate the use of topology pre- ﬁgsgga?ﬁg}fﬂﬁﬂep;%‘fggfnggi?*;rgﬂgg%ﬁfg§6App"°at'°”S (Las Vegas.
serving clustering algorithms. Thedegreealgorithm is good [12] Calvert, K., M. Doar and E. W. ZeguraModeling Internet Topology
for producing a smaller number of clusters, but the cluster 'EEE Communications Magazine, June, 1997, pp.160-163.
size is larger. Self-adjustis good for producing small-sized
clusters, but it produces a larger number of clusters. From
the stand-point of scalability, we suggest that future cluster-
ing algorithms should strike a good balance between cluster
number and cluster size, and use a multi-level hierarchy so
that acknowledgments can be gathered within each cluster and
level by level. In our simulation, we had only tried one set
of parameters because we want to evaluate the cluster struc-
tures produced by the different algorithms under similar con-
straints. We need to simulate the algorithms more extensively
using other parameter values.

As future work, we propose to prove the optimality of the
Self-adjustalgorithm, and to study the optimization of differ-
ent parameters while considering network protocol design cri-
teria. The criteria might vary depending on the network appli-
cations. In our simulation, we assumed no loss and the same
delay on all the links. In the future, we need to consider more
realistic assumptions, dynamically changing multicast groups,
and the dynamic update of the virtual structures produced by
clustering algorithms. We also need to incorporate these vir-
tual structures into existing reliable multicast protocols to test
their effects on the protocols.
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